

ABSTRACT
Systemic lupus erythematosus (SLE), a complex and heterogeneous autoimmune disease, represents a significant challenge for both diagnosis and treatment. Patients with SLE in Latin America face special problems that should be considered when therapeutic guidelines are developed. The objective of the study is to develop clinical practice guidelines for Latin American patients with lupus. Two independent teams (rheumatologists with experience in lupus management and methodologists) had an initial meeting in Panama City, Panama, in April 2016. They selected a list of questions for the clinical problems most commonly seen in Latin American patients with SLE. These were addressed with the best available evidence and summarised in a...
standardised format following the Grading of Recommendations Assessment, Development and Evaluation approach. All preliminary findings were discussed in a second face-to-face meeting in Washington, DC, in November 2016. As a result, nine organ/system sections are presented with the main findings; an ‘overarching’ treatment approach was added. Special emphasis was made on regional implementation issues. Best pharmacologic options were examined for musculoskeletal, mucocutaneous, kidney, cardiac, pulmonary, neuropsychiatric, haematological manifestations and the antiphospholipid syndrome. The roles of main therapeutic options (ie, glucocorticoids, antimalarials, immunosuppressant agents, therapeutic plasma exchange, belimumab, rituximab, abatacept, low-dose aspirin and anticoagulants) were summarised in each section. In all cases, benefits and harms, certainty of the evidence, values and preferences, feasibility, acceptability and equity issues were considered to produce a recommendation with special focus on ethnic and socioeconomic aspects. Guidelines for Latin American patients with lupus have been developed and could be used in similar settings.

INTRODUCTION

Systemic lupus erythematosus (SLE) is a complex multisystemic autoimmune disease resulting, oftentimes, in irreversible damage, diminished quality of life and reduced life expectancy.\(^1\) Genetic and environmental factors play important roles in its pathogenesis.\(^4,8\) Disease manifestations and severity vary according to the patients’ racial/ethnic background and socioeconomic status (SES).\(^1,9\) \(^10\) Data from Grupo Latino Americano de Estudio del Lupus (GLADEL), Lupus in Minorities: Nature vs Nurture (LUMINA) and the Lupus Family Registry and Repository cohorts have demonstrated that Latin American and North American Mestizo patients (mixed Amerindian and European ancestry), African descendants and Native Americans develop lupus earlier\(^11,12\) although diagnostic delays may occur.\(^1\) They also experience more severe disease, have higher disease activity levels,\(^2\) accrue more organ damage\(^7\) and have higher mortality rates,\(^3\) succumbing mainly to disease activity and/or infections.\(^1,3\) \(^13–15\)

Although guidelines for SLE treatment do exist and there is scarce evidence to support specific therapies for Latin American patients with lupus,\(^16–21\) this regional effort has considered the impact of racial/ethnic background\(^1\) \(^10\) \(^22–28\) and SES\(^9\) \(^\text{on lupus outcomes and treatment response.}\(^25\) \(^26\) Other medication variables such as cost and availability were also taken into account since they affect adherence and are relevant in decision-making.\(^27\) \(^28\) GLADEL and the Pan-American League of Associations of Rheumatology have joined efforts to produce these guidelines,\(^29\) which are presented by organ systems, although manifestations usually occur in more than one. Nevertheless, treatment is usually tailored to the more severe manifestation(s), which usually benefits the less severe.

METHODS

Two working teams on logistics and methodological issues constituted by experienced Latin American rheumatologists and experts in the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline system developed a framework for these guidelines. Nine organ/system sections were prepared with the main findings. Special emphasis was placed on reviewing local problems and regional publications.

The GRADE approach was followed in the process (http://www.gradeworkinggroup.org) answering the clinical questions voted most relevant by the panel. The description of the methodology followed to develop these guidelines has already been published.\(^29\) All authors listed in this manuscript have participated in planning, drafting, reviewing, final approval and are accountable for all aspects of the manuscript. No ethical approval was required by institutions. We present the final recommendations and their supporting information. Comments from three patients with SLE were also considered.

RESULTS

For each of the subheadings listed below, the panel considered interventions based on experience, availability, affordability and a stepwise therapeutic approach of the different alternatives. Standard of care (SOC) was defined as the use of hydroxychloroquine (HCQ) and, if clinically indicated, low-dose glucocorticoids (GCs) (prednisone ≤7.5 mg or equivalent for the shortest time).\(^24\) Chloroquine remains an alternative for some of the Latin American countries where HCQ is not available and careful monitoring of eye side effect is recommended. Overarching principles are shown in box 1. Tables summarising the evidence that was considered in the process are shown in online supplementary tables in https://doi.org/10.5061/dryad.bg8452h.

Musculoskeletal manifestations

a. Which is the best treatment for adult patients with SLE and musculoskeletal (MSK) manifestations?

Interventions considered

(1) SOC; (2) SOC plus methotrexate (MTX); (3) SOC plus leflunomide (LFN); (4) SOC plus belimumab; (5) SOC plus abatacept (ABT); (6) other options: azathioprine (AZA), mycophenolate mofetil (MMF), cyclosporine A (CsA) or rituximab (RTX) (online supplementary tables S2.1.1, S2.1.4, S2.1.6, S2.1.7, S2.2.11, S2.1.11, S2.1.12, S2.1.14, S2.1.15, S2.1.17, S2.2.1, S2.2.2, S2.2.4, S3.1.1, S3.1.3–S3.1.6, S3.2.1, S3.2.2, S12.2–S12.5, S12.8–S12.10).
Benefits and harms
Although the panel judged that compared with SOC alone, adding MTX, LFN, belimumab or ABT is possibly associated with beneficial effects, a significant proportion of patients will achieve adequate symptom control with SOC and could be spared the adverse effects/excess costs associated to those other options.

Recommendation
The panel suggests SOC alone over adding other immunosuppressant (IS) in adult patients with SLE with MSK manifestations (weak recommendation based on low certainty of the evidence). It suggests also adding either MTX, LFN, belimumab or ABT to those failing to respond to SOC (weak recommendation based on low to moderate certainty of the evidence). Cost and availability may favour MTX (Table 1).

Cutaneous manifestations
a. Which is the best treatment for adult patients with different manifestations of cutaneous lupus?

Interventions considered
(1) SOC; (2) SOC plus MTX; (3) SOC plus AZA; (4) SOC plus MMF; (5) SOC plus CsA; (6) SOC plus belimumab; (7) SOC plus ABT; (8) SOC plus acitretin; (9) SOC plus abatacept; (10) SOC plus cyclophosphamide (CYC) (online supplementary tables S4.1.1–S4.1.7, S4.2.1–S4.2.5, S4.3.1, S4.4.1, S4.4.2, S4.5.1–S4.5.13).

Benefits and harms
The panel judged that a significant proportion of patients will achieve adequate symptom control with SOC and could be spared the adverse effects/costs of the other therapies.

Recommendation
The panel suggests SOC alone over adding other IS in adult patients with SLE with cutaneous manifestations (weak recommendation based on low certainty of the evidence). It also suggests adding MTX, AZA, MMF, CsA, CYC or belimumab to patients failing to respond to SOC (weak recommendation based on low to moderate certainty of the evidence). Cost and availability may favour MTX and AZA (Table 1).

Adult kidney manifestations

Interventions considered
(1) GCs; (2) GCs plus high-dose CYC; (3) GCs plus low-dose CYC; (4) GCs plus MMF; (5) GCs plus RTX plus MMF; (6) GCs plus tacrolimus (TAC); (7) GCs plus AZA (online supplementary tables S1.1.1.2, S1.1.1.7, S1.1.1.8, S1.1.1.10, S1.1.2.2, S1.1.2.5, S1.1.2.7, S1.1.3.2, S1.1.4.1, S1.2.6).

Benefits and harms
Based on the identified evidence the panel concluded that compared with GCs alone, the addition of other IS (CYC, MMF or TAC) is associated with significant benefits, higher remission rates and lower progression rates to end-stage renal disease (ESRD). Head-to-head comparisons between MMF, TAC and high-dose CYC showed that MMF and TAC are associated with less adverse effects than high-dose CYC. Between low and high-dose CYC the balance favours the former because of better safety profile and comparable efficacy, although this conclusion is based on one trial that included predominantly Caucasians. RTX did not provide additional benefits when combined with MMF.

Recommendation
The panel recommends SOC (GCs and antimalarials (AM)) in addition to an IS (CYC in high or low doses, MMF or TAC) over GCs alone, for induction in patients with SLE-related kidney disease (strong recommendation based on moderate certainty of the evidence). Although more African-American descendants and Hispanic patients responded to MMF than CYC (25), limited access to MMF and TAC in several Latin American countries, due primarily to cost issues, makes CYC the best alternative for induction (high or low dose) in these regions (Table 2).

b. Which is the best maintenance treatment for adult patients with lupus nephritis?

Interventions considered
Recommendations are applicable to patients showing partial or total remission after induction therapy aiming at sustaining renal remission, preventing relapses and achieving the best long-term outcome. The following interventions were considered: (1) AZA; (2) MMF; (3) CYC; (4) TAC; and (5) CsA (online supplementary tables S1.1.1.7, S1.1.2.1, S1.1.2.2, S1.2.1, S1.2.3, S1.2.4, S1.2.5, S1.2.6, S1.2.7).

Benefits and harms
The panel concluded that long-term IS agents during maintenance therapy prolong stable renal function, reduce proteinuria, extend renal survival and minimise the toxicity of GCs. AZA, CYC, MMF and CsA seem to be equivalent regarding efficacy but MMF and AZA have a better safety profile, particularly regarding gonadal toxicity and blood pressure control. We found very low certainty of the evidence for TAC as maintenance therapy, with studies mostly restricted to Asian populations.

Table 1 GLADEL–PANLAR recommendations for musculoskeletal and cutaneous manifestations in patients with systemic lupus erythematosus

<table>
<thead>
<tr>
<th>Treatment recommendations</th>
<th>Quality of the evidence</th>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Musculoskeletal (MSK) manifestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In adult patients with SLE and MSK manifestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First line: Use SOC (GCs and AMs) alone over adding other IS.</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>If disease remains active after SOC, add either MTX or LFN or belimumab or ABT over other IS</td>
<td>Low to moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cutaneous manifestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In adult patients with different manifestations of cutaneous lupus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First line: Use SOC alone over adding other IS.</td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>If disease remains active after SOC, add MTX, AZA, MMF, CsA, CYC or belimumab over other IS</td>
<td>Low to moderate</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

Important: ABT, abatacept; AM, antimalarials; AZA, azathioprine; CsA, cyclosporine A; CYC, cyclophosphamide; GC, glucocorticoid; GLADEL, Grupo Latino Americano de Estudio del Lupus; IS, immunosuppressant; LFN, leflunomide; MMF, mycophenolate mofetil; MTX, methotrexate; PANLAR, Pan-American League of Associations of Rheumatology; SLE, systemic lupus erythematosus; SOC, standard of care.
Table 2 GLADEL–PANLAR recommendations for adult and childhood-onset lupus nephritis

<table>
<thead>
<tr>
<th>Treatment recommendations</th>
<th>Quality of the evidence</th>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction therapy for adult patients with lupus-related nephritis</td>
<td>Moderate</td>
<td>Strong</td>
</tr>
<tr>
<td>Use SOC (GCs and AMs) plus another IS agent (CYC, MMF or TAC) over GCs alone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance therapy for adult patients with lupus-related nephritis</td>
<td>Low</td>
<td>Strong*</td>
</tr>
<tr>
<td>Use MMF or AZA over CYC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induction therapy for childhood patient with lupus-related nephritis</td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Use high-dose GCs (prednisone 1–2 mg/kg/day, maximum 60 mg/day) plus another IS agent (MMF or CYC) over high-dose GCs alone.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance therapy for childhood patient with lupus-related nephritis</td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Use MMF or AZA over CYC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Strong recommendation supported on high certainty in less adverse events with MMF or AZA than with CYC.

Interventions considered
(1) MMF plus GCs; (2) CYC plus GCs; (3) GCs (online supplementary table S9.2.3).

Benefits and harms
The panel concluded that MMF or AZA decreases the occurrence of ESRD without significant adverse events, as maintenance therapy for cLN. The panel pointed that differential pharmacokinetic effects of MMF in cLN may exist, which may require dosing increase.30

Recommendation
The panel suggests MMF or AZA over CYC for patients with cLN who responded, partially or completely, to induction therapy (weak recommendation based on low certainty of the evidence). Cost and availability may favour AZA (table 2).

Cardiac manifestations

a. Which is the best treatment for adult patients with lupus-related acute pericarditis?

Interventions considered
(1) SOC plus colchicine; (2) SOC plus non-steroidal anti-inflammatory drugs (NSAIDs); (3) SOC plus belimumab; (4) low to moderate dose of GCs for 4 weeks and slow tapering (online supplementary tables S6.2.1 and S6.3.1).

Benefits and harms
Based on the identified evidence the panel concluded that the use of SOC combined with colchicine is associated with significant benefits (decrease in pericarditis recurrence rate) compared with SOC alone. Belimumab probably made little or no difference in pericarditis-related symptom improvement.

Recommendation
The panel suggests SOC plus colchicine over SOC plus NSAIDs or belimumab for patients with acute SLE-related pericarditis (weak recommendation based on low certainty of the evidence) (table 3).

Pulmonary manifestations

a. Which is the best treatment for lupus-related diffuse alveolar haemorrhage (DAH)?

Table 3 GLADEL–PANLAR recommendations for cardiac and pulmonary manifestations

<table>
<thead>
<tr>
<th>Treatment recommendations</th>
<th>Quality of the evidence</th>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac manifestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use SOC plus colchicine over SOC plus NSAIDs or belimumab.</td>
<td>Low</td>
<td>Weak</td>
</tr>
<tr>
<td>Pulmonary manifestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use intravenous GCs plus CYC and/or belimumab, very low dose.</td>
<td>Very Low</td>
<td>Strong*</td>
</tr>
</tbody>
</table>

*Strong recommendation supported on possible benefits in the context of a life-threatening situation.

GC, glucocorticoid; CYC, cyclophosphamide; GLADEL, Grupo Latino Americano de Estudio del Lupus; Ig, immunoglobulin; NSAID, non-steroidal anti-inflammatory drug; PANLAR, Pan-American League of Associations of Rheumatology; RTX, rituximab; SOC, standard of care; TAC, tacrolimus.
Interventions considered
(1) High-dose GCs plus CYC; (2) high-dose GCs plus intravenous immunoglobulins (Ig); (3) high-dose GCs plus therapeutic plasma exchange (TPE); (4) high-dose GCs plus RTX (online supplementary tables S6.1.1 and S6.1.2).

Benefits and harms
In the absence of trustworthy evidence regarding the effects of the different interventions in this scenario and considering DAH’s high mortality rate, the panel decided that intense and early approach is mandatory without prioritising one intervention over another.

Recommendation
The panel recommends that patients with SLE-related DAH be treated with intravenous GCs plus CYC and/or intravenous Ig and/or TPE and/or RTX over GCs alone (strong recommendation based on very low certainty of the evidence, since possible benefits exist in a life-threatening situation). Cost and availability may favour GC plus CYC (table 3).

Neuropsychiatric manifestations
a. Which is the best treatment for adult patients with lupus-related severe, acute neuropsychiatric manifestations?

Interventions considered
(1) High-dose GCs; (2) high-dose GCs plus CYC; and (3) high-dose GCs plus RTX (online supplementary tables S5.1.1, S5.1.2, S5.1.3, S5.1.6, S5.2.1, S5.2.3, S5.3.3, S5.4.1, S5.4.3, S5.5.1, S5.5.2, S5.6.1).

Benefits and harms
The panel concluded that both options (GCs plus CYC and GCs plus RTX) were associated with large benefits and moderate harms in comparison to GCs plus placebo in patients with acute neurological manifestations. No studies comparing these two options were identified. In terms of SLE and severe neurological manifestations, clinical trials with GCs plus CYC focused on both general neurologic manifestations, and on seizures, psychosis, myelitis, peripheral neuropathy, brain stem disease and optic neuritis, specifically. No data were found regarding other neuropsychiatric manifestations. The panel significantly weighted the fact that the certainty of the evidence was better for CYC than RTX and that RTX was only evaluated in refractory patients.

Recommendation
The panel suggests using GCs plus CYC over GCs alone or GCs plus RTX (online supplementary tables S6.1.1 and S6.1.2).

Haematological manifestations
a. Which are the best interventions for patients with severe acute lupus-related haemolytic anaemia (haemoglobin ≤8 g/dL)?

Interventions considered
(1) High-dose GCs; (2) GCs plus RTX (online supplementary tables S7.1.12 and S7.1.13).

Benefits and harms
The panel concluded that compared with GCs as the first-line therapy, the addition of RTX provided moderate beneficial effects (reducing the risk of flare) and moderate harms (increasing the risk of infections). However, the panel significantly weighted the risks associated with RTX as well as availability and cost issues.

Recommendation
The panel concluded that compared with GCs as the first-line therapy, the addition of RTX provided moderate beneficial effects (reducing the risk of flare) and moderate harms (increasing the risk of infections). However, the panel significantly weighted the risks associated with RTX as well as availability and cost issues.

Haematological manifestations
a. Which are the best interventions for patients with severe acute lupus-related haemolytic anaemia (haemoglobin ≤8 g/dL)?

Interventions considered
(1) High-dose GCs; (2) high-dose GCs plus RTX; (3) high-dose GCs plus intravenous Ig (online supplementary tables S7.1.12, S7.1.13, S7.1.15).

Benefits and harms
The panel concluded that compared with GCs as the first-line therapy, RTX and intravenous Ig provided moderate beneficial effects (increasing the platelet count). The harmful effects were judged as moderate for RTX (increase in infections) and small for intravenous Ig (infusion reactions).

The panel significantly weighted the risks associated with RTX as well as availability and cost issues. In life-threatening situations, the panel significantly weighted intravenous Ig’s and RTX’s beneficial effect on platelet count.
Recommendations

The panel suggests using high-dose GCs in patients with lupus with severe lupus thrombocytopenia (weak recommendation based on moderate certainty of the evidence).

It also recommends intravenous Ig with/without GCs or RTX plus GCs for patients who are refractory to high-dose GCs, those with life-threatening bleeding, those requiring urgent surgery and those with infections (strong recommendation based on moderate certainty of the evidence). Cost and availability, however, may prompt the use of IS instead of RTX although there are no data to support this assertion (table 4).

Antiphospholipid syndrome

a. Which is the best treatment for adult patients with SLE with antiphospholipid syndrome (APS) and venous thromboembolic disease (VTD)?

Interventions considered

(1) Extended anticoagulation (AC) with vitamin K antagonist (compared with not-extended AC); (2) high-intensity AC (international normalized ratio (INR) 3–4.5) compared with moderate-intensity AC (INR 2–3) (online supplementary tables S10.2.1 and S10.2.2).

Benefits and harms

The panel judged the effect of extended AC as a large benefit, reducing VTD with increase in bleeding risk as a moderate harm. For the comparisons of different AC intensities, the panel decided to use the evidence from observational studies because it judged that it probably better reflects reality given that the randomised controlled trials (RCT) are severely flawed (indirectness of intervention as most patients did not reach the INR >3 goal). They judged the reduction in VTD as a large benefit and the bleeding increase as a large harm. Hence, the panel considered that the balance could favour the intervention only when the risk of VTD recurrence is particularly high.

Recommendation

The panel recommends extended AC with vitamin K antagonist therapy for patients with APS with VTD (strong recommendation based on moderate certainty of evidence).

The panel recommends standard (INR 2.0–3.0) over high-intensity AC (INR 3.0–4.0) for patients with APS with VTD (strong recommendation based on very low certainty of the evidence, since certainty of the effect on VTD recurrence is very low but certainty in bleeding risk is high (significant increase in major bleeding with INR 3.0–4.0)).

b. Which is the best treatment for adult patients with SLE with APS and stroke?

Interventions considered

Extended antithrombotic therapy with: (1) vitamin K antagonist; (2) low-dose aspirin (LDA: 81–100 mg/day); (3) vitamin K antagonist plus LDA; (4) high-intensity AC (INR 3–4.5) (online supplementary tables S10.3.1 and S10.3.2).

Benefits and harms

The panel decided to use the body of evidence provided by observational studies because it probably better reflects reality as the RCTs are severely flawed (indirectness of population as most patients were inadequately diagnosed with APS). The panel judged the observed reduction in arterial thrombosis with high-intensity AC as a large benefit, and the bleeding increase as a large harm. Also, it was noted that the observed basal risk (risk with LDA) of thromboembolic recurrence in patients with APS and arterial events was particularly high, compared with the risk of recurrence in patients with VTD.

Recommendation

The panel suggests extended high-intensity (INR 3.0–4.0) over standard-intensity AC (INR 2.0–3.0) or LDA alone for patients with SLE with APS and stroke (weak recommendation based on very low certainty of the evidence).

c. Which is the best treatment for pregnant SLE women with antiphospholipid antibodies and recurrent pregnancy loss?

Interventions considered

(1) HCQ plus LDA; (2) HCQ plus LDA plus heparin; (3) HCQ plus intravenous Ig (online supplementary tables S10.5.1, S10.5.2, S10.5.3, S10.5.4, S10.5.5, S10.5.6, S10.5.7, S10.5.8).

Benefits and harms

The panel judged the observed reduction in pregnancy loss with the addition of heparin to LDA as a large benefit. This intervention was not associated with significant harms. The addition of GCs or intravenous Ig to heparin plus LDA was associated with large harms (significant increase in premature delivery) without relevant benefits. Regarding heparin administration, the panel considered the reduction in pregnancy loss with low molecular weight heparin (LMWH) in comparison with unfractionated heparin (UFH) as a large benefit without significant adverse effects. No additional benefits were observed with LMWH–enoxaparin 80 mg compared with 40 mg.

Recommendation

The panel recommends HCQ plus LMWH plus LDA over HCQ plus LDA or adding GCs or intravenous Ig for pregnant patients with SLE with antiphospholipid antibodies and recurrent pregnancy loss (strong recommendation based on moderate certainty of the evidence (LMWH plus LDA vs other alternatives) and very low certainty of the evidence (GCs and intravenous Ig vs other alternatives), since high certainty of harms related to GCs (increased premature delivery) and intravenous Ig (costs increase, burden related to drug administration) exists).

It also suggests LMWH at a dose of 40 mg/day over UFH or higher doses of LMWH (weak recommendation based on low certainty of the evidence) (table 5).

DISCUSSION

Treatment of SLE in Latin America remains a challenge despite several guidelines published on the management of this disease.16–21 The distinct epidemiology, healthcare resources, socioeconomic issues and priorities were considered to develop these guidelines.

Although these guidelines consider region limitations, the inclusion of alternative approaches for tailoring treatment did not exclude the task of providing physicians with the state-of-the-art findings in the field. This was a major advantage of the present work since highlighting these advances provides valuable basis for future requirement of government authorisation of new drugs in these countries.

Of note, problems faced by Latin American countries are shared by several developing nations. Therefore, it is expected that these guidelines will also be very useful for them. Furthermore, due to ever increasing globalisation and the increase
Table 5 GLADEL–PANLAR recommendations for adult patients with SLE with antiphospholipid antibodies or antiphospholipid syndrome

<table>
<thead>
<tr>
<th>Treatment recommendations</th>
<th>Quality of the evidence</th>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>In adult patients with lupus with APS and venous thromboembolic disease</td>
<td>Use extended over time-limited anticoagulation. Moderate</td>
<td>Strong</td>
</tr>
<tr>
<td>Use standard-intensity anticoagulation (INR 2.0–3.0) or high-intensity anticoagulation (INR 3.0–4.0).</td>
<td>Very low</td>
<td>Strong*</td>
</tr>
<tr>
<td>In adult patients with SLE with APS and stroke</td>
<td>Use high-intensity anticoagulation (INR 3.0–4.0) over standard-intensity anticoagulation (INR 2.0–3.0) or LDA.</td>
<td>Very low</td>
</tr>
<tr>
<td>In pregnant lupus women with obstetric APS and recurrent pregnancy losses</td>
<td>Use HCQ plus LMWH plus LDA over HCQ plus LDA, or adding GCs or intravenous Ig.</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

*Strong recommendation supported on high certainty in significant bleeding risk increase with high-intensity anticoagulation.

of migratory movements of people from countries with more susceptible SLE groups in terms of frequency and disease severity both in terms of race/ethnicity (Mestizos, Asians, Africans) and low SES to countries with better life opportunities, we consider that these guidelines may be used by physicians anywhere in the world, even in developed countries, where such individuals may migrate to and seek care for their lupus.

We acknowledge as a limitation that certainty of the evidence was not as high as desirable for most recommendations and probably biased by few randomised clinical trials. Although regional information was published on several topics we recognise that these guidelines should be updated as research-based changes in our understanding of SLE emerge. Regardless, the publication of these guidelines must be followed by health system engagement and support of implementers, major steps towards improvement of lupus treatment in Latin America and low/middle-income countries.

Author affiliations

1Departamento de Medicina Interna, Grupo Oroño–Centro Regional de Enfermedades Autoinmunes y Reumáticas (GO-CREAR), Rosario, Argentina
2Rheumatology Division, Facultad de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
3Sección de Reumatología, Servicio de Medicina, Instituto de Investigaciones Médicas “Alfredo "Lanari”, Buenos Aires, Argentina
4Centro de Investigación Clínica de Morelia, SC, Morelia, México
5Servicio de Clínica Médica del Hospital Alemán de Buenos Aires, Hospital Alemán de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
6Grupo de Inmunología Celular e Inmunogenética, Universidad de Antioquia, Medellín, Colombia
7Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia. Universidad San Sebastián, Santiago, Chile
8Departamento de Reumatología, Hospital Universitario, Fundación San Vicente, Medellín, Colombia
9Servicio de Reumatología, Departamento de Medicina, ESE, ARTMEDICA, Medellín, Colombia
10Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, México
11Unidad de Enfermedades Autoinmunes Sistémicas, Facultad de Medicina, Clínica Médica “C”, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
12Unidad de Reumatología y Enfermedades Autoinmunes Sistémicas, HIGA Dr Oscar Alende, Mar del Plata, Argentina
13Servicio de Reumatología, Enfermedades Reumatológicas e Investigación Clínica (ERIC), Hospital Docente Padre Billini, Santo Domingo, Dominicana Republica
14Departamento de Clínica Médica, Disciplina de Reumatología, Facultad de Ciencias Médicas da UNICAMP, Universidade Estadual de Campinas, Campinas, Brazil
15Servicio de Reumatología, Departamento de Especialidades Médicas, Hospital Nacional Edgardo Rebagliati Martins, ESALud., Lima, Perú
16Servicio de Reumatología, CIEBAC, SC, Guadalajara, México
17Unidad de Enfermedades Reumáticas y Autoinmunes (UNERA), Corporación Universitaria de Salud, Cuenca, Ecuador
18Universidad Nacional de Colombia, Bogotá, Colombia
19Centro Integral de Reumatología, Reumalab, Medellín, Colombia
20Sección de Reumatología, Hospital del Salvador, Universidad de Chile, Santiago, Chile
21Pediatric Department, Facultad de Medicina, Children’s Institute, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
22Clínica Reumatológica, Facultad de la República, and Unidad Docente Asistencial, Hospital Pasteur, Instituto Nacional de Reumatología, Montevideo, Uruguay
23Servicio de Reumatología, Hospital Clinic, Barcelona, España
24Servicio de Reumatología, Hospital Provincial de Rosario, Rosario, Argentina
25Servicio de Reumatología, Hospital Italiano de Córdoba, Córdoba, Argentina
26División de Reumatología, Department of Medicine, Emory School of Medicine, Atlanta, Georgia, USA
27Servicio de Reumatología, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
28Servicio de Reumatología, Hospital General Guillermo Almenara Irigoyen, EsSalud., Lima, Perú
29Universidad Científica del Sur, Lima, Perú
30Servicio de Reumatología del Hospital de las Clínicas da Universidade Federal do Pernambuco (HC-UFPE), Recife, Brasil
31Unidad de Reumatología, Departamento de Medicina, Universidad de Oriente, Complejo Hospitalario Universitario Ruiz y Páez, Ciudad Bolívar, Venezuela
32Servicio de Reumatología, Departamento de Clínica Médica, Facultad de Medicina, Hospital de las Clinicas, Universidad Federal de Goiás, Goiânia, Brasil
33Departamento de Pediatría, Facultad de Medicina, Universidad de Antioquia, Hospital Pablo Tobón Uribe, Medellín, Colombia
34Servicio de Reumatología, Hospital General de Medellín “Luz Castro de Gutiérrez” ESE, ARTMEDICA, Medellín, Colombia
35Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Ciudad de México, México
36Servicio de Reumatología, Hospital Universitario, Fundación San Vicente, Medellín, Colombia
37Unidad de Enfermedades Reumáticas y Autoinmunes Sistémicas, HIGA Dr Oscar Alende, Mar del Plata, Argentina
38Servicio de Reumatología, Enfermedades Reumatológicas e Investigación Clínica (ERIC), Hospital Docente Padre Billini, Santo Domingo, Dominicana Republica
39Departamento de Clínica Médica, Disciplina de Reumatología, Facultad de Ciencias Médicas da UNICAMP, Universidade Estadual de Campinas, Campinas, Brazil
40Servicio de Reumatología, Departamento de Especialidades Médicas, Hospital Nacional Edgardo Rebagliati Martins, ESALud., Lima, Perú
41Servicio de Reumatología, CIEBAC, SC, Guadalajara, México
42Servicio de Inmunología, Instituto de Investigaciones Médicas “Alfredo "Lanari”, Ciudad Autónoma de Buenos Aires, Argentina
43Servicio de Reumatología, Hospital Escuela “Eva Perón”, Granadero Biaigora, Argentina
44Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
45Departamento de Reumatología, Instituto Nacional de Cardiología “Ignacio Chávez”, Ciudad de México, México
46Unidad de Reumatología, Cátedra de Clínica Médica I, Hospital Córdoba. Cátedra de Semiología, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba., Córdoba, Argentina
47Rheumatology Division, Department of Internal Medicine, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
48Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
49Departamento de Reumatología, Consultorio de Especialidades del Instituto Salvador de la Seguridad Social, San Salvador, El Salvador
50Departamento de Inmunología y Reumatología, Hospital General de Occidente., Zapopan, Jalisco, México
51Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
52Departamento de Reumatología, Hospital de Especialidades CMN SXXI, IMSS, Ciudad de México, Mexico
53Grupo de Trabajo en Enfermedades Autoinmunes Sistémicas, Servicio de Clínica Médica, Facultad de Medicina, Universidad de la República, Hospital Pasteur, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
54Servicio Nacional de Reumatología, Centro de Investigaciones Médico Quirúrgicas (CIMEQ), La Habana, Cuba

1555
Recommendation

5) Servicio de Reumatología, Instituto de Rehabilitación Psicofísica (IREP), Ciudad Autónoma de Buenos Aires, Argentina

6) Division of Clinical Immunology and Rheumatology, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA

7) Department of Medicine, School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru

Correction notice This article has been corrected since it published Online First. The author affiliations have been updated.

Acknowledgements The authors are deeply grateful to Miss Teresa Cattoni (Buenos Aires, Argentina), Laura Athie (Mexico City, Mexico) and Kim Schofield (Atlanta, USA), the three patients with SLE who carefully reviewed this manuscript and provided very useful comments and suggestions.

Contributors All authors listed in this manuscript have participated in planning, drafting, reviewing, final approval and are accountable for all aspects of the manuscript.

Funding PANLAR financed the development of these guidelines. PANLAR received unrestricted funds from GlaxoSmithKline (GSK) and UCB Pharma for this endeavour.

Disclaimer None of the entities influenced the content of the guidelines.

Competing interests LBF, BAPE, and OAM have been speakers for GlaxoSmithKline (GSK). JCTB has received research grants from GSK, MRX, ON, and FJM have received support grants for meetings from GSK. JAGP has been a lecturer for Roche. ERS has received research grants and has been a lecturer for Roche. JFM has been a clinical researcher for Anthera. MHC has received research grants from Roche and is an advisor for Eli Lilly.

Patient consent Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and provided very useful comments and suggestions.

REFERENCES

Recommendation

